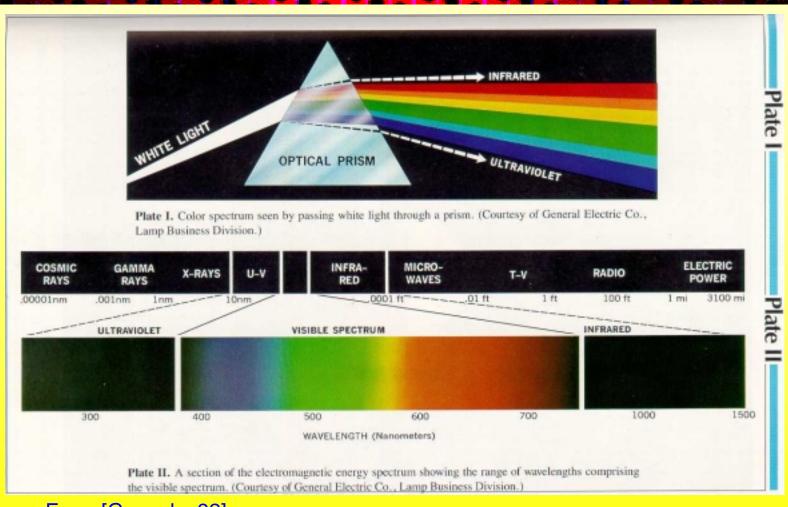


EL612 Video Processing

Lecture I
Basics of Video

Yao Wang Pol ytechnic University, Brooklyn, NY11201 yao @vision.poly.edu


Outline

- Color perception and specification
- Video capture and display
- Analog raster video
- Analog TV systems
- Digital video

Color Perception and Specification

- Light -> color perception
- Human perception of color
- Type of light sources
- Trichromatic color mixing theory
- Specification of color
 - Tristimulus representation
 - Luminance/Chrominance representation
- Color coordinate conversion

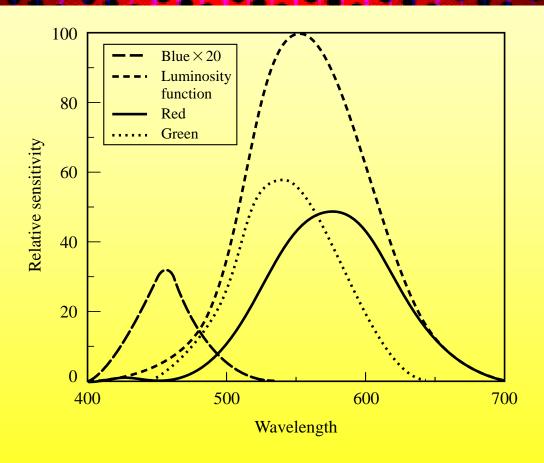
Light is part of the EM wave

From [Gonzalez92]

Illuminating and Reflecting Light

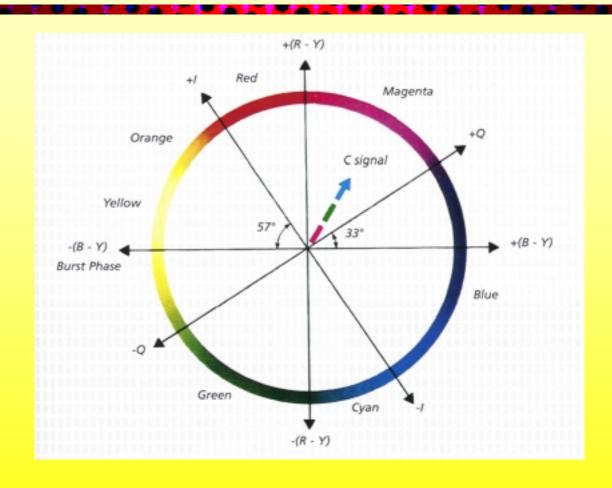
• Illuminating sources:

- emit light (e.g. the sun, light bulb, TV monitors)
- perceived color depends on the emitted freq.
- follows additive rule
 - R+G+B=White


Reflecting sources:

- reflect an incoming light (e.g. the color dye, matte surface, cloth)
- perceived color depends on reflected freq (=emitted freqabsorbed freq.)
- follows subtractive rule
 - R+G+B=Black

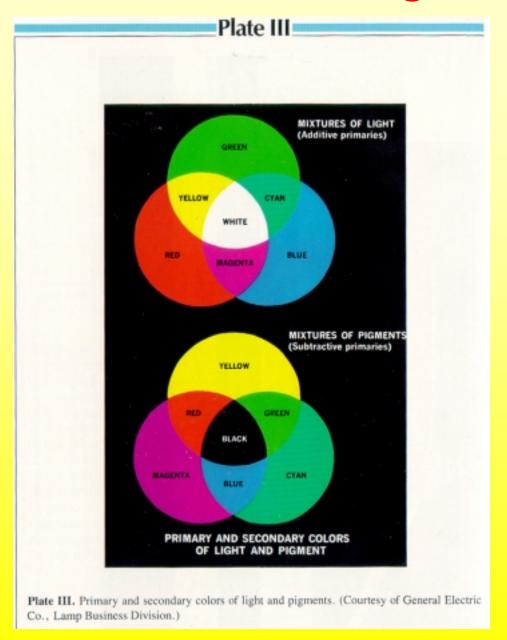
Human Perception of Color


- Retina contains photo receptors
 - Cones: day vision, can perceive color tone
 - Red, green, and blue cones
 - Tri-receptor theory of color vision [Young1802]
 - Rods: night vision, perceive brightness only
- Color sensation is characterized by
 - Luminance (brightness)
 - Chrominance
 - Hue (color tone)
 - Saturation (color purity)

Frequency Responses of Cones and the Luminous Efficiency Function

$$C_i = \int C(\lambda)a_i(\lambda)d\lambda, \quad i = r, g, b, y$$

Color Hue Specification


Trichromatic Color Mixing

- Trichromatic color mixing theory
 - Any color can be obtained by mixing three primary colors with a right proportion

$$C = \sum_{k=1,2,3} T_k C_k$$
, T_k : Tristimulus values

- Primary colors for illuminating sources:
 - Red, Green, Blue (RGB)
 - Color monitor works by exciting red, green, blue phosphors using separate electronic guns
- Primary colors for reflecting sources (also known as secondary colors):
 - Cyan, Magenta, Yellow (CMY)
 - Color printer works by using cyan, magenta, yellow and black (CMYK) dyes

Color Mixing

From [Gonzalez92]

Blue

Color Representation Models

- Specify the tristimulus values associated with the three primary colors
 - RGB
 - CMY
- Specify the luminance and chrominance
 - HSI (Hue, saturation, intensity)
 - YIQ (used in NTSC color TV)
 - YCbCr (used in digital color TV)
- Amplitude specification:
 - 8 bits for each color component, or 24 bits total for each pixel
 - Total of 16 million colors
 - A true RGB color display of size 1Kx1K requires a display buffer memory size of 3 MB

Color Coordinate Conversion

- Conversion between different primary sets are linear (3x3 matrix)
- Conversion between primary and XYZ/YIQ/YUV are also linear
- Conversion to LSI/Lab are nonlinear
 - LSI and Lab coordinates
 - coordinate Euclidean distance proportional to actual color difference
- Conversion formulae between many color coordinates can be found in [Gonzalez92]

Video Capture and Display

- Light reflection physics
- Imaging operator
- Color capture
- Color display
- Component vs. composite video

Video Capture

For natural images we need a light source (λ: wavelength of the source)

- $-E(x,y,z,\lambda)$: incident light on a point (x,y,z) world coordinates of the point
- Each point in the scene has a reflectivity function.
 - $-r(x,y,z,\lambda)$: reflectivity function
- Light reflects from a point and the reflected light is captured by an imaging device.

$$-c(x,y,z,\lambda) = E(x,y,z,\lambda) \times r(x,y,z,\lambda)$$
: reflected light.

$$\rightarrow$$
 E(x, y, z, λ)

$$\mathbf{c}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda) = \mathbf{E}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda) \cdot \mathbf{r}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \lambda)$$

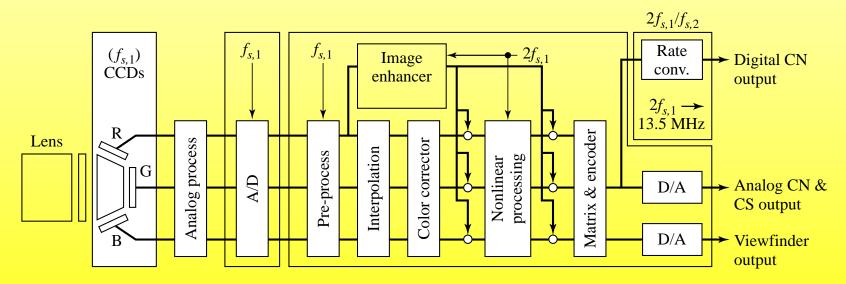
Camera(
$$c(x, y, z, \lambda)$$
) =

Courtesy of Onur Guleryuz

More on Video Capture

- Reflected light to camera
 - Camera absorption function

$$\overline{\psi}(\mathbf{X},t) = \int C(\mathbf{X},t,\lambda) a_c(\lambda) d\lambda$$


Projection from 3-D to 2-D

$$\mathbf{X} \underset{P}{\longrightarrow} \mathbf{x}$$

 $\psi(P(\mathbf{X}), t) = \overline{\psi}(\mathbf{X}, t) \text{ or } \psi(\mathbf{x}, t) = \overline{\psi}(P^{-1}(\mathbf{X}), t)$

- The projection operator is non-linear
 - Perspective projection
 - Othographic projection

How to Capture Color

- Need three types of sensors
- Complicated digital processings are incorporated in advanced cameras

Figure 1.2 Schematic block diagram of a professional color video camera. Reprinted from Y. Hashimoto, M. Yamamoto, and T. Asaida, Cameras and display systems, *IEEE* (July 1995), 83(7):1032–43. Copyright 1995 IEEE.

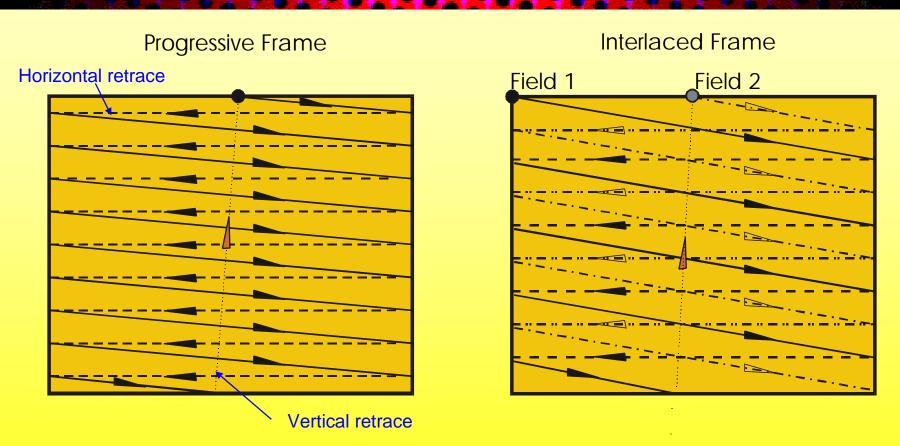
Video Display

- CRT vs LCD
- Need three light sources projecting red, green, blue components respectively

Component vs. Composite Video

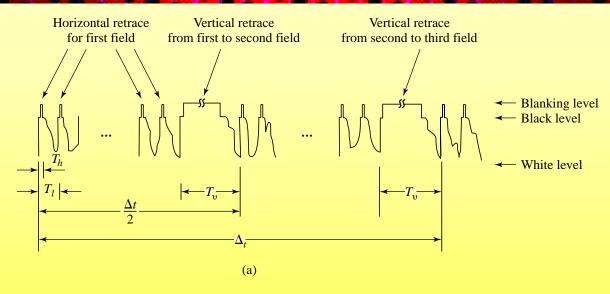
Component video

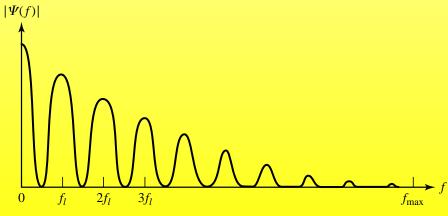
- Three color components captured/saved/displayed separately
- Stored in either RGB or YIQ (YCrCb)
- New digital video format
- Composite video
 - Convert RGB to YIQ (YUV)
 - Multiplexing YIQ into a single signal
 - Chrominance components are band-limited and multiplexed to the upper band of Y
 - Used in all analog video devices (analog TV, VHS tapes, etc.)

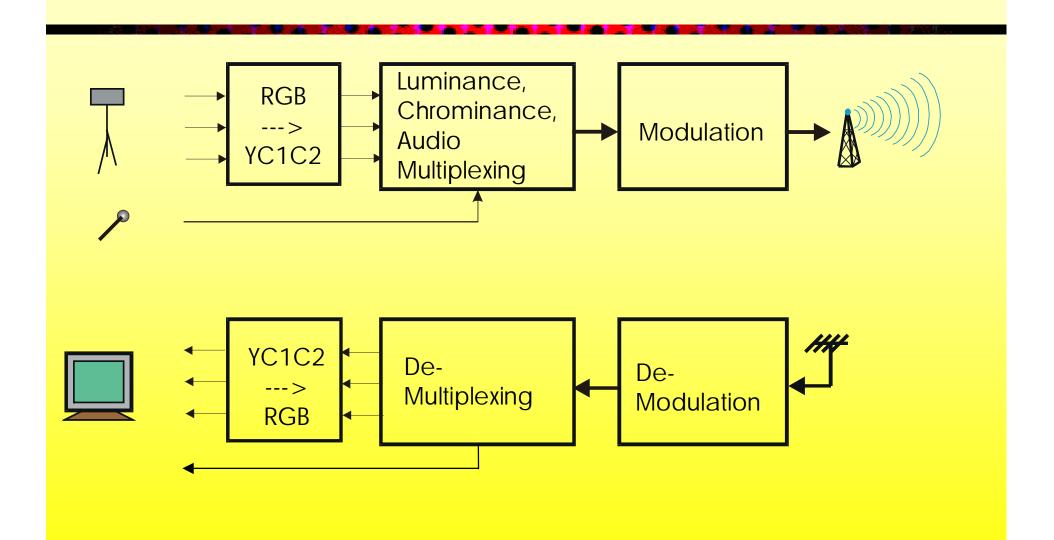

Analog Video

- Video raster
- Progressive vs. interlaced raster
- Analog TV systems

Raster Scan

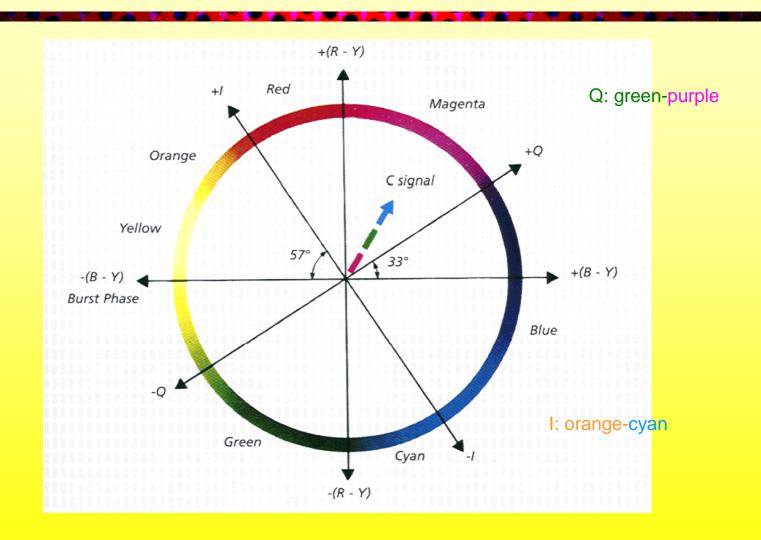

- Real-world scene is a continuous 3-D signal (temporal, horizontal, vertical)
- Analog video is stored in the raster format
 - Sampling in time: consecutive sets of frames
 - To render motion properly, >=30 frame/s is needed
 - Sampling in vertical direction: a frame is represented by a set of scan lines
 - Number of lines depends on maximum vertical frequency and viewing distance, 525 lines in the NTSC system
 - Video-raster = 1-D signal consisting of scan lines from successive frames


Progressive and Interlaced Scans


Interlaced scan is developed to provide a trade-off between temporal and vertical resolution, for a given, fixed data rate (number of line/sec).

Waveform and Spectrum of an Interlaced Raster

Color TV Broadcasting and Receiving


Different Color TV Systems

Parameters	NTSC	PAL	SECAM
Field Rate (Hz)	59.95 (60)	50	50
Line Number/Frame	525	625	625
Line Rate (Line/s)	15,750	15,625	15,625
Color Coordinate	YIQ	YUV	YDbDr
Luminance Bandwidth (MHz)	4.2	5.0/5.5	6.0
Chrominance Bandwidth (MHz)	1.5(I)/0.5(Q)	1.3(U,V)	1.0 (U,V)
Color Subcarrier (MHz)	3.58	4.43	4.25(Db),4.41(Dr)
Color Modulation	QAM	QAM	FM
Audio Subcarrier	4.5	5.5/6.0	6.5
Total Bandwidth (MHz)	6.0	7.0/8.0	8.0

Why not using RGB directly?

- R,G,B components are correlated
 - Transmitting R,G,B components separately is redundant
 - More efficient use of bandwidth is desired
- RGB->YC1C2 transformation
 - Decorrelating: Y,C1,C2 are uncorrelated
 - C1 and C2 require lower bandwidth
 - Y (luminance) component can be received by B/W TV sets
- YIQ in NTSC
 - I: orange-to-cyan
 - Q: green-to-purple (human eye is less sensitive)
 - Q can be further bandlimited than I
 - Phase=Arctan(Q/I) = hue, Magnitude=sqrt (I^2+Q^2) = saturation
 - Hue is better retained than saturation

I and Q on the color circle

Conversion between RGB and YIQ

• RGB -> YIQ

$$Y = 0.299 R + 0.587 G + 0.114 B$$

 $I = 0.596 R - 0.275 G - 0.321 B$
 $Q = 0.212 R - 0.523 G + 0.311 B$

• YIQ -> RGB

$$R = 1.0 Y + 0.956 I + 0.620 Q,$$

 $G = 1.0 Y - 0.272 I - 0.647 Q,$
 $B = 1.0 Y - 1.108 I + 1.700 Q.$

TV signal bandwidth

Luminance

 Maximum vertical frequency (cycles/picture-height)= black and white lines interlacing

$$f_{v,\text{max}} = Kf'_{s,y}/2$$

Maximum horizontal frequency (cycles/picture-width)

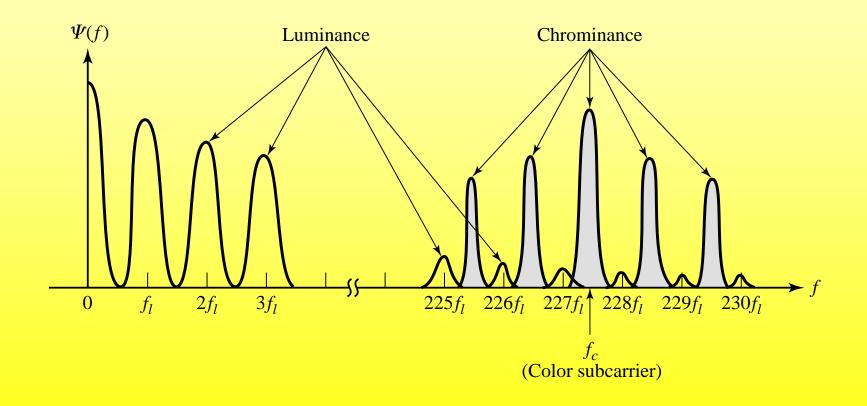
$$f_{h,\max} = f_{v,\max} \cdot IAR$$

Corresponding temporal frequency (cycles/second or Hz)

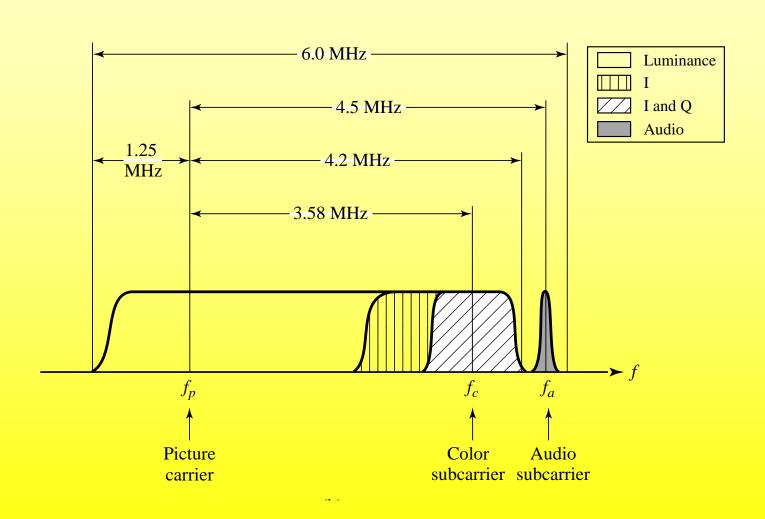
$$f_{\text{max}} = f_{h,\text{max}} / T'_{l} = \text{IAR} \cdot Kf'_{s,v} / 2T'_{l}$$

- For NTSC, $f_{\text{max}} = 4.2 \text{ MHz}$

Chrominance


- Can be bandlimited significantly
 - I: 1.5 MHz, Q: 0.5 MHz.

Multiplexing of Luminance and Chrominance

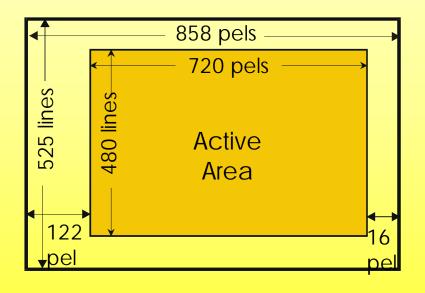

- Chrominance signal can be bandlimited
 - it usually has a narrower frequency span than the luminance and the human eye is less sensitive to high frequencies in chrominance
- Position the bandlimited chrominance at the high end spectrum of the luminance, where the luminance is weak
- The actual position should be such that the peaks of chrominance spectrum interlace with those of the luminance

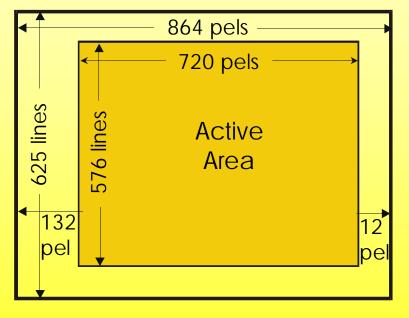
$$f_c = 455 f_l / 2$$
 (= 3.58 Hz for NTSC)

Spectrum Illustration

Multiplexing of luminance, chrominance and audio (Composite Video Spectrum)

Digital Video


- Digital video by sampling/quantizing analog video raster → BT.601 video
- Other digital video formats and their applications


Digitizing A Raster Video

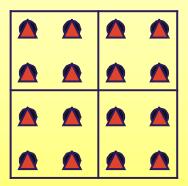
- Sample the raster waveform = Sample along the horizontal direction
- Sampling rate must be chosen properly
 - For the samples to be aligned vertically, the sampling rate should be multiples of the line rate
 - Horizontal sampling interval = vertical sampling interval
 - Total sampling rate equal among different systems

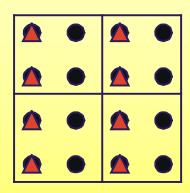
$$f_s = 858 f_l (NTSC) = 864 f_l (PAL/SECAM) = 13.5 \text{ MHz}$$

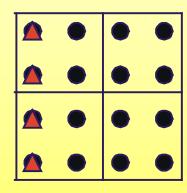
BT.601* Video Format

525/60: 60 field/s

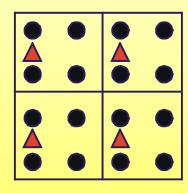
625/50: 50 field/s


* BT.601 is formerly known as CCIR601


RGB <--> YCbCr


$$Y_{_}d = 0.257 R_{_}d + 0.504 G_{_}d + 0.098 B_{_}d + 16,$$

 $C_{_}b = -0.148 R_{_}d - 0.291 G_{_}d + 0.439 B_{_}d + 128,$
 $C_{_}r = 0.439 R_{_}d - 0.368 G_{_}d - 0.071 B_{_}d + 128,$


$$R_{-}d = 1.164 Y_{-}d' + 0.0 C_{-}b' + 1.596 C_{-}r',$$

 $G_{-}d = 1.164 Y_{-}d' - 0.392 C_{-}b' - 0.813 C_{-}r',$
 $B_{-}d = 1.164 Y_{-}d' + 2.017 C_{-}b' + 0.0 C_{-}r',$

Chrominance Subsampling Formats

4:4:4 For every 2x2 Y Pixels 4 Cb & 4 Cr Pixel (No subsampling)

4:2:2 For every 2x2 Y Pixels 2 Cb & 2 Cr Pixel (Subsampling by 2:1 horizontally only)

4:1:1 For every 4x1 Y Pixels 1 Cb & 1 Cr Pixel (Subsampling by 4:1 horizontally only)

4:2:0 For every 2x2 Y Pixels 1 Cb & 1 Cr Pixel (Subsampling by 2:1 both horizontally and vertically)

Y Pixel

▲ Cb and Cr Pixel

Digital Video Formats

Video Format	Y Size	Color	Frame Rate	Raw Data Rate
		Sampling	(Hz)	(Mbps)
HDTV Over air.	cable, satellite, MPEC	G2 video, 20-45 Mb	ps	
SMPTE296M	1280x720	4:2:0	24P/30P/60P	265/332/664
SMPTE295M	1920x1080	4:2:0	24P/30P/60I	597/746/746
Video production	, MPEG2, 15-50 Mbp	os		
BT.601	720x480/576	4:4:4	60I/50I	249
BT.601	720x480/576	4:2:2	60I/50I	166
			40.7.4	
U 1	o distribution (DVD,		*	
BT.601	720x480/576	4:2:0	60I/50I	124
Intermediate qual	ity video distribution	(VCD, WWW), MI	PEG1, 1.5 Mbps	
SIF	352x240/288	4:2:0	30P/25P	30
Video conferencii	ng over ISDN/Interne	et, H.261/H.263, 128	3-384 Kbps	
CIF	352x288	4:2:0	30P	37
Video telephony o	over wired/wireless m	odem H 263 20-64	1 Khns	
QCIF QCIF	176x144	4:2:0	30P	9.1